İzmir Institute of Technology - Department of Civil Engineering CE 539 Advanced Mechanics of Materials - Fall 2024-2025 Course Outline

Course Instructor	Dr. İzzet Özdemir Department of Civil Engineering Office Hours: TBA	Office: C 206 E-mail: izzetozdemir@iyte.edu.tr
Course Schedule	Wednesday 9:45 - 12:30, Room: CZ 14	
Course Conduct	The course will be taught in class at the campus. LMS page is going to be activated and used throughout the semester.	
Textbook & References	There is no particular textbook. The following books are good references covering the course content.	
	• Advanced Strength and Applied Elasticity, A.C. Ugural, S.K. Fenster, 4th Edition, Pearson, 2003.	
	• Advanced Mechanics of Materials, A. Boresi, R.J. Schmidt, 6th Edition, Wiley, 2003.	
	• Advanced Mechanics of Materials, R.D. Cook, W.C. Young, Colliear MacMillan, 1985.	
	• Inelastic Analysis of Structures, M. Jirasek, Z.P. Bazant, Wiley, 2002.	
	• Plastic Methods for Steel and Concrete Structures, S.S.J. Moy, John Wiley & Sons, 1981.	
Objectives	The course intends to broaden the knowledge and horizons of the students in the field of mechanics of materials by teaching selected advanced topics.	
Course Content		
CONTENT	• Analysis of Stress	
	 Definition of Stress and Stress 1 Equations of Equilibrium in Di Two-dimensional Stress at a Po Mohr's Circle for 2-D Stress Stresses on an Oblique Plane in Mohr's Circle for 3-D Stress 	Notation fferential Form bint ate a Point a terms of Principle Stresses
	• Analysis of Strain & Stress-Strain Relations	
	Definition of StrainEquations of CompatibilityGeneralized Hooke's LawStrain Energy	
	• Failure Criteria	
	 Failure by Yielding and Fracture The Maximum Principle Stress The Maximum Shear Stress 	re ress Theory Theory

- The Maximum Distortion Energy Theory
- The Octahedral Shearing Stress Theory
- Mohr's Theory
- The Coulomb-Mohr Theory
- Basic Rheological Models
 - Rheological devices for basic material behaviour
 - Description of elasticity, visco-elasticity and elasto-plasticity
- Introduction to Elasto-plastic Analysis
 - Elasto-plastic Bending of Beams
 - Collapse of Simple Frames
 - Introduction to Limit Analysis
- Introduction to Elastic Stability (If time permits)
 - Buckling of a Column
 - End Conditions
 - Critical Stress in a Column
 - Solution by Finite Differences

GRADING The <u>tentative</u> overall grade constitution is as follows:

- Mid-term : 30 %
- Homework sets : 30 %
- Final : 40 %